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Applications of Integral Equation Calculations
to High-Temperature Solvation Phenomena
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The solvation of infinitely dilute solutes in supercritical solvents is illustrated by
integral equation calculations, according to a recently proposed molecular-
based formalism that characterizes the solvent environment around individual
species and connects it to the resulting macroscopic solvation behavior. The for-
malism is applied to the analysis of the solubility enhancement of nonelectrolyte
species, the solvent effect in kinetic rate constants, and the solvation of ionic
species. Finally, some relevant theoretical implications are discussed regarding
the modeling of high-temperature solutions.
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1. INTRODUCTION

The molecular-based understanding of the solvation process taking place
when a species is introduced in a pure solvent at near- and supercritical
conditions has been the goal of many researchers in the physical chemistry
community.(1, 2) In particular, chemical engineers have been most interested
in the potential uses of supercritical fluids in a variety of industrial pro-
cesses, ranging from extraction of value-added components in the food
industry(3, 4) to their use as media to conduct chemical reactions, (5, 6)

according to their ability to tailor the solvation behavior of species in solu-
tion. In addition, nature provides numerous examples of hydrothermal pro-
cesses that take place in high-temperature aqueous media, which involve
the simultaneous solvation of gases, non-polar compounds, and salts.

A common, and frequently overlooked, feature in all these systems is
the simultaneous occurrence of microscopic phenomena involving two
rather different length scales.(7) That is, the introduction of a foreign species
in an otherwise pure solvent, induces a finite (and local) density perturba-
tion (the solvation structure), whose effect propagates over a distance
across the solvent given by the prevalent correlation length. This propaga-
tion is compressibility driven, and therefore, all mechanical properties of
the infinitely dilute species in solutions will scale as the pure solvent com-
pressibility.(8) In fact, as the infinitely dilute systems approaches the
solvent's critical condition, the solvation contributions may be obscured by
the diverging critical quantities so that it is imperative for us to be able
separate the two contributions.

While the coexistence of both short- (solvation) and long-ranged
(compressibility driven) effects makes supercritical solutions challenging to
model, this feature suggests a natural way to characterize their thermo-
dynamic properties in terms of the two distinct length scales. Moreover,
this precise characterization highlights the explicit contributions of
molecular solute-solvent asymmetry to the solvation phenomenon. Beyond
a curiosity, and the fact that supercritical fluids are widely used in chemical
engineering, the occurence of the compressibility-driven phenomena
stresses the need for new tools to isolate the unwanted and rather annoying
divergent quantities.

Most theoretical studies on supercritical fluids in general, and super-
critical solvation in particular, have focussed on the underlying connection
between the species partial molar properties and the system microstruc-
ture.(9�11) While these studies were motivated by the urgency for rigorous
methods based on statistical mechanics, progress was only made after we
recognized and performed the unambiguous split between solvation and
compressibility-driven contributions to the system properties. This split was
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achieved according to the length scales involved and independently of any
arbitrary choice for the size (radius) of the solvation shell.(7, 12)

In this report we succinctly review our solvation formalism for
infinitely dilute supercritical solutions by exhibiting some statistical
mechanical expressions relevant to supercritical solvation and the connec-
tion to their thermodynamic counterparts. Then we illustrate the formalism
using integral equation calculations for supercritical systems composed
of either Lennard-Jones, Yukawa, or hard spheres plus multipoles and
polarizabilities. These systems will be used to analyze the behavior of some
relevant macroscopic solvation properties associated with solubility enhan-
cement and solvent effects on kinetics (Lennard-Jones), gas solubility
(Yukawa), and ionic solvation (hard-spheres plus multipoles and polari-
zabilities).

This report is organized as follows. In Section 2 we introduce the main
ideas behind the solvation formalism. Subsequently, in Subsections 2.1 to
2.4, we discuss some specific features associated with the solubility enhance-
ment of solutes, the solubility of gases, the solvent effects on kinetic rate
constants, and the solvation of ions, respectively, in supercritical solvents.
In Section 3, Subsections 3.1 to 3.4, we illustrate the solvation phenomena
discribed in the previous sections with integral equations calculations.
Finally, in Section 4, we provide some relevant comments regarding the
solvation formalism and the macroscopic modeling of high-temperature
solutions.

2. SOLUTE-INDUCED EFFECTS AND SUPERCRITICAL
SOLVATION

The solvation formalism(7, 12, 13) hinges upon the discrimination
between the local solvent-density perturbation due to the presence of the
solute (as opposed to a solvent molecule), and the concomitant com-
pressibility-driven propagation of this perturbation. From a pictorial view-
point the solvation of a solute molecule U in a pure solvent V at constant
state conditions (constant temperature T and either constant pressure P or
solvent density \) can be described by a thought experiment on a system
(pure solvent) in which one solvent molecule V is distinguishable by its
solute label U. As such, this system constitutes an ideal solution in the sense
of the Lewis-Randal rule. (14, 15) Consequently, the solvation process
proceeds by the mutation of the distinguishable solvent molecule U into the
actual solute molecule U (e.g., through a Kirkwood coupling-parameter
charging) to form the desired infinitely dilute non-ideal solution. This
process in which the original solute species U in the ideal solution��where
solute-solvent UV-interaction are identical to solute-solute UU- and
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solvent-solvent VV-interactions��is converted into the actual solute U
in the non-ideal solution, is driven by the difference of free energy
(+r�

U (T, P)&+ ro
V (T, P)), where + is the chemical potential, the supercript r

denotes a residual quantity for a pure (o) or an infinitely dilute (�) species
at the indicated state conditions, respectively. Note that for electrolyte
solutions the solvation process involves & solute species in the ideal solution
and the difference of free energy becomes (+r�

U (T, P)&&+ro
V (T, P)), where

v=v++v& , with v+ and v& being the stoichiometric coefficients of the
salt (see Section 2.4).

In brief, this formalism connects the microscopic changes of the
solvent structure around the mutating species with the macroscopic (ther-
modynamic) properties which best characterize the solvation process at
high-temperature, while segregating the solvation from the compressibility
phenomena. As we discussed elsewhere(16) this connection can be achieved
in essentially four equivalent ways, by interpreting the driving force of the
solvation process from either a microscopic or a macroscopic perspective.
For convenience of notation throughout the paper, we first take the neutral
ionic solute as our hypothetical ``molecular'' entity U in order to derive the
solvation quantities. Thus, when dealing with non-electrolyte solutions we
should replace &=1 in all derived expressions.

We start with the exact thermodynamic expression, (13)

+r�
U (T, P)&&+ ro

V (T, P)=&kT ln(,� �
U �,� o

V)=|
\(P)

0
("� �

U &&"� o
V)

d\
}\

(1)

where k is the Boltzmann constant, "� o
V=\&1 is the partial molar volume

of the pure solvent, ,� i is the partial molar fugacity coefficient of species i,
and } is the solvent isothermal compressibility. Now, we can introduce the
rate of change of pressure (at constant temperature and solvent density)
caused by the structural perturbation of the solvent around the solute, i.e.,
(�P��xU)�

T, \ as follows, (13)

+r�
U (T, P)&&+ro

V (T, P)=|
\(P)

0 \ �P
�xU+

�

T, \

d\
\2 (2)

Equation (2) highlights the finiteness of its integrand at any state condi-
tion, and allows us to make contact with the microstructure of the
system, (12) i.e., (see Appendix B of Chialvo et al.13),

\ �P
�xU+

�

T, \
=&\kT(C o

VV&C �
UV) (3)

170 Chialvo et al.



where C o
VV and C �

UV are the direct correlation function integrals (DCFI)
for the solvent-solvent and solute-solvent interactions (i.e., cij (k) is the
three-dimensional Fourier transform of the direct correlation function
cij (r), then Cij#\ĉij (k=0) are descriptors of the solution microstruc-
ture(17, 18)).

Because the experimental microscopic information is typically in the
form of correlation functions, a convenient way of looking at the solvation
driving-force is in terms of integrals over those functions such as the excess
particle-number, (12)

N �
U, ex=4?\ |

�

0
[ g�

UV (r)& go
VV (r)] r2 dr (4)

i.e., the number of solvent molecules around the solute in excess of that
around any solvent molecule (the Lewis-Randall ideal solution). Because
N�

U, ex=&}(�P��xU)�
T, \ , (12) we can also show that its solvation contribu-

tion becomes N �
U, ex(SR)=(}IG�}) N �

U, ex , (16) and consequently,

\ �P
�xU+

�

T, \
=&

N �
U, ex(SR)

}IG (5)

where }IG=(\kT )&1 is the isothermal compressibility of the ideal gas at
the same state conditions as the solvent, and SR denotes short-ranged
(associated with the local solvent density-perturbation) contribution to the
corresponding diverging N �

U, ex . Equation (5) emphasizes the connection
between the pressure change associated with the perturbation of the solvent
structure around the solute and the corresponding effective change in the
number of solvent molecules. The notation SR can equally well be inter-
preted to mean solvation-related to distinguish it from the long-ranged, or
compressibility-related quantities.

The ourstanding feature of N �
U, ex(SR) is its independence from any

choice for the radius of the solvation shell, therefore, it can be thought as
being an effective solvation number (see Chialvo et al.(13)). However, it
should not be confused with the conventional definition of hydration�solva-
tion numbers based on the structural information for the first hydration
shell.

Analogously, the pressure derivative (�P��xU)�
T, \ can be put in

volumetric terms as, (13)

\ �P
�xU+

�

T, \
=kT\2("� �

U (SR)&&"� o
V) (6)
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so that, the solvation driving-force can be interpreted macroscopically
either in terms of the finite pressure perturbation (�P��xU)�

T, \ as in Eq. (2),
the finite volumetric perturbation ("� �

U (SR)&&"� o
V), or the effective solva-

tion number N �
U, ex(SR) as follows,

+r�
U (T, P)&&+ ro

V (T, P)=kT |
\(P)

0
("� �

U (SR)&&"� oV) d\ (7)

and,

+r�
U (T, P)&&+ ro

V (T, P)=kT |
\(P)

0
N �

U, ex(SR)
d\
\

(8)

The three quantities, (�P��xU)�
T, \ , N �

U, ex(SR), and ("� �
U (SR)&&"� o

V) are
measures of the so-called solute induced effects. In Section 2.4 we present
the analogous expressions for the individual ions constituting the neutral
salt.

2.1. Solubility Enhancement

In this section we use the formalism to establish the microscopic bases
of the supercritical solubility enhancement in terms of molecular direct
correlation function integrals. For example, the solubility equation for an
incompressible pure non-volatile phase in equilibrium with a near-critical
solvents reads,19

P,� UxU= f s
Ur,� sat

U Psat
U exp[;"s

U (P&Psat
U )] (9)

and the solubility enhancement factor becomes, (20)

E#(xU�x IG
U )=(,� sat

U �,� U) exp[;" s
U (P&Psat

U )] (10)

where xIG
U =P sat

U �P, where Psat
U , "s

U , and ,� sat
U are the vapor pressure, molar

volume, and fugacity coefficient of the pure solute in the condensed phase
at the prevailing state conditions, respectively. Thus, the enhancement
factor can be finally recast as follows (see Appendix C of Chialvo and
Cummings(7))

Er,� �
U (T, P)&1=,� o

V (T, P)&1 exp _&|
\(P)

0

;
\2 \ �P

�xU+
�

T, \
d\&

=\1&"o
V |

\(P)

0
C o

VV d\+ exp \|
\(P)

0
C �

UV

d\
\ + (11)
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Equation (11) indicates the fundamental link between the solubility enhance-
ment (decrease in ,� �

U (T, P)) and the local density perturbation around the
solute (microstructure), and emphasizes two important issues. First, because
Eq. (11) involves only short-ranged quantities, the increase in the solubility
enhancement for attractive mixtures cannot be ascribed to the corresponding
long-ranged increase in 1=\G�

UV=4?\ ��
0 ( g�

UV (r)&1) r2 dr as proposed
elsewhere.(10) Second, because small changes in the system pressure result
in large changes in the solvent density in the near-critical region, Eq. (11)
illustrates one of the advantages of near-critical processing: the solvation
properties of the solvent can be modified significantly (and thus ``tuned'')
through small changes in pressure.

2.2. Gas Solubility

Japas and Levelt Sengers(21) derived the limiting temperature
dependence of Henry's constant and the solute distribution factor K � and
presented two useful linear correlations for these quantities based on the
so-called Krichevskii's parameter and the solvent's orthobaric density near
the solvent's critical point. These expressions are,

T ln K�=\ 2
k\2

c+\
�P
�xU+

�

Tc , \c

(\l&\c) (12)

and

T ln(HU, V�f o
V)=A+\ 1

k\2
c+\

�P
�xU+

�

Tc , \c

(\ l&\c) (13)

where the constant A#Tc ln[HU, V (Tc)�f o
V (Tc)] and \l is the orthobaric

liquid density with a critical value \c .(22) Even though these expressions
were expected to be closely obeyed by real systems only in the
neighborhood of the solvent's critical point, where the orthobaric path
obeys the asymptotic expression ("&"c)=\|T&Tc | ;&1, these authors
found that the linearity appeared to hold over a rather large orthobaric
density range. However, the observed slopes do not show good agreement
with the expected asymptotic values, (23) even though those from the
T ln K� vs. (\l&\c) plots (Eq. (12)) are closer than those from
T ln(HU, V �f o

V) vs. (\ l&\c) plots (Eq. (13)).
Wilhelm(24) later suggested that T ln L� vs. (\l&\c), where L�=

(\l�\&)_ �K� is the Ostwald coefficient, rather than T ln K� vs. (\ l&\c),
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might result in a better linear relationship over a wider range of orthobaric
densities. This suggestion was based on the fact that,

T ln L�=T ln(\l�\")&T ln K�

=T ln([\c+2]�[\c&2])&T ln K �, 2=\l&\c=\c&\&

(14)

after replacing T ln K� in the right hand side of Eq. (14) by Eq. (12), and
invoking the approximation T ln([\c+2]�[\c&2])r2Tc(2�\c) we obtain,

T ln L�=\ 2
\c+_Tc&\ 1

k\c+\
�P
�xU+

�

Tc , \c
& (\ l&\c) (15)

an expression that has the same asymptotic form as that for T ln K� and
T ln(HU, V �f o

V).
To test the orthobaric density dependence of T ln(HU, V �f o

V), T ln K�,
and T ln L�, we invoke the following exact expressions, (21)

T ln K�(T )=T lim
xU � 0

ln( yU �xU)

=(ar�
x &a r�

y )�k (16)
and,

T ln[HU, V (T)�f o
V (T )]=a r�

x �k (17)

Consequently,

T ln L�=T ln(\l�\&)&(ar�
x &a r�

y )�k (18)

with the derivative ar�
: =(�ar��:)�

T, \ given by (Appendix E of Chialvo
et al.(25)),

ar�
: =|

\(P_)

0 \ �P
�:U+

�

T, \

d\
\2 , :=x, y (19)

where xU and yU denote the solute mole fractions in the liquid and vapor
phase, respectively, ar=Ar�N is the residual Helmholtz free energy per
molecule.

2.3. Solvation Effects on Kinetic Rate Constants in
Supercritical Solvents

It has been suggested that the experimental isothermal kinetic rate
constants of some reactions at near and supercritical conditions could not
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be explained solely by the thermodynamic pressure effect. Some researchers
have suggested that local composition enhancement and density augmenta-
tion effects around reactants are responsible for the lack of agreement
between experimental kinetic rate constants measurements and predicted
values by the transition state theory (TST) applied at the microscopic level
using equations of state.(26�28)

Before accepting this explanation, it is worth noting that there are at
least two other possible explanations for this lack of quantitative prediction
of the pressure effects on the kinetic rates. First, the main players in the
TST-approach, the species solvation properties, are microscopic quantities
which, in macroscopic modeling, are indirectly described by macroscopic
properties, which are difficult to measure or hard to predict accurately.
Second, a frequently overlooked aspect is that the TST-approach relies on
the hypothesis of unit transmission coefficient, i.e., no barrier re-cross-
ing.(29) So unless we can address the real possibility of the breakdown of
the TST while analyzing the experimental data, little can be said about
the (lack of ) agreement indicated above. We can address the first issue,
through the application of the solvation formalism outlined in Section 2.
With that purpose let us assume the following simple reaction,

&RR+&SS ww��ww
solvent

R� � products (20)

where R is a solute reactant, S is the cosolvent, R� is the activated complex
in equilibrium with the reactants in solution, and the prefactors are the
stoichiometry coefficients. Here we consider the case in which the co-
solvents might participate in the reaction as reactants. According to the
TST of reactions(29) the reaction rate constant is given by,

kTST=
kTK0

�
K �

c (21)

where k and � are Boltzmann and Planck constants, respectively, T is the
absolute temperature, K0 is a factor that gives the correct units for kTST,
and K �

c is the molar based equilibrium constant for the activation process
given by Eq. (20). In order to study the pressure effect on the kinetic rate
constant we first rewrite K �

c in terms of the species fugacities, and then,
determine the pressure coefficient of ln kTST (see Appendix A of Chialvo
et al.(30) for details),

\� ln kTST

�P +T, x
=&2&}+(&R"� �

R +&S "� �
S &&R "� �

R )�kT (22)

where 2&�=&R"� �
R +&S"� �

S &&R"� �
R is the actual activation volume.
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Although Eq. (22) gives a macroscopic expression for the pressure
derivative of the TST kinetic rate constant, it also allows us to introduce
the solvation contributions in a precisely microscopic way. In fact, Eq. (22)
can be rewritten as, (30)

\� ln kTST

�P +T, x
=}\[&R("� �

R (SR)&"� �(IG)
R (SR)+&S ("� �

S (SR)&"� �(IG)
S (SR)

&&R("� �
R (SR)&"� �(IG)

R (SR))] (23)

where \=(1�"� o
V) and the superscript IG denotes an ideal gas property.

Thus, the pressure coefficient of the rate constant can be factorized into
two terms, one involving the solvent's isothermal compressibility, and the
other containing short-ranged solvation contributions to the species in
solutions relative to their ideal gas contributions (absence of solute-solvent
interactions). Note that the difference ("� �U (SR)&"� �(IG)

U (SR)) actually sub-
tracts the translational or ``ideal gas'' contribution from the "� �

U (SR), and
therefore, contains only contributions from intermolecular interactions.
Moreover, for reactions with 2&=0, the ``ideal gas'' contributions cancel
out, and the pressure effect becomes equal to the solvation contribution to
the activation volume, [&R "� �

R (SR)+&S"� �
S (SR)&&R "� �

R (SR)], magnified
by the solvent's isothermal compressibility.

2.4. Ion Solvation

For the case of ionic solutes, the solvation analysis of Section 2 is still
valid provided that &=&++&& , i.e., the solute species U is the neutral salt,
and therefore the properties of this hypothetical solute are linear combina-
tions of the corresponding ion counterparts. In fact, for the case of ionic
solutes the solvation process involves the perturbation of the solvent struc-
ture around the individual ions, and therefore, we can connect the solvent
structure around each ion with properties of the hypothetical salt species.
For example, the partial molar volume of the salt U#C &+A&& at infinite
dilution becomes,

"� �
U =&&"� �

&+&+ "� �
+ (24)

where "� �
i is the partial molar volume of the ion i at infinite dilution.

Consequently, (13)

\ �P
�xU+

�

T, \
=&+ \ �P

�x++
�

T, \
+&& \ �P

�x&+
�

T, \
(25)
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This expression indicates that the experimentally determined Krichevskii's
parameter for electrolyte solutions(18, 31) is actually a linear combination of
those corresponding to the individual ions forming the salt, i.e.,

\�P
�xi+

�

T, \
=kT\(C o

VV&C �
iV&T �

iV); i=+, & (26)

which can also be written in two equivalent forms, (32)

\�P
�xi+

�

T, \
=kT\("� �

i (SR)&"� o
V); i=+, & (27)

and,

\�P
�xi+

�

T, \
=&

N �
i, ex(SR)

}IG ; i=+, & (28)

where "� �
i (SR) and N �

i, ex(SR) are the individual-ion counterparts of "� �
U (SR)

and N �
U, ex(SR), (32) respectively. T �

iV is a solvent property (33) given by,

T �
iV=&

4?\qi (=&1)
3=+ |

�

0
r3c101

00; VV (r) dr (29)

where = is the solvent dielectric constant, qi is the ion charge, + is the
solvent's dipole moment, and c101

00; VV (r) is the r-dependent (101) coefficient
of the rotational invariant expansion of the solvent-solvent direct correla-
tion function.(34)

Note finally that the above equations for the ions allows us to define
the solvation thermodynamics of the individual ions constituting the
neutral ionic solute, in terms of the corresponding ion-induced effects by
replacing (�P��xi)

�
T, \ with the corresponding expressions (26)�(28),

+r�
i (T, P)&+ro

V (T, P)=|
\(P)

0 \�P
�x i+

�

T, \

d\
\2

=kT ln[,� �
i �,� o

V]; i=&, + (30)

so that, from Eq. (1), we have

+r�
U (T, P)&&+ ro

V (T, P)=&kT ln(,� �
U �,� o

V) (31)

with (,� �
U )&=(,� �

+)&+ (,� �
&)&&, where ,� �

i is the partial molar fugacity coef-
ficient for the individual ion i at infinite dilution.
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File: 822J 256512 . By:XX . Date:13:06:00 . Time:10:30 LOP8M. V8.B. Page 01:01
Codes: 1911 Signs: 1291 . Length: 44 pic 2 pts, 186 mm

3. SOME TYPICAL RESULTS

Here we use the Ornstein-Zernike integral equations with the adequate
closure approximations to determine the pair correlation functions, their
integrals, and the thermodynamic properties of the infinitely dilute systems
of interest.

3.1. Solubility Enhancement

In this section we present some results for the solvation behavior of
two near-critical Lennard-Jones binary mixtures which have been studied
previously by molecular dynamics simulation. They are the infinitely dilute
solutions of pyrene in near-critical carbon dioxide(35, 36) and di-ter-butyl-
nitroxide (DTBN) in near-critical ethane.(37) According to the classification
of Debenedetti and Mohamed,(38) these mixtures are usually referred to as
attractive systems (C �

UV>1) which in macroscopic terms means a non-
volatile solute ((�P��xU)�

T, \<0).(8) For the sake of comparison we have
studied the density dependence (0.05�\_3

V�0.5) of the microscopic and
macroscopic properties of these three systems at the same reduced tem-
perature Tr=1.02.

Fig. 1. Comparison between the density dependence of (�P��xU)�
T, \ for the attractive

Lennard-Jones pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02
from PY calculations. All quantities are reduced in terms of the solvent's Lennard-Jones
parameters.
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Codes: 1066 Signs: 536 . Length: 44 pic 2 pts, 186 mm

Fig. 2. Comparison between the density dependence of C �
UV for the attractive Lennard-Jones

pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02 from PY calcula-
tions. All quantities are reduced in terms of the solvent's Lennard-Jones parameters.

Fig. 3. Comparison between the density dependence of "� �
U for the attractive Lennard-Jones

pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02 from PY calcula-
tions. All quantities are reduced in terms of the solvent's Lennard-Jones parameters.
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Fig. 4. Comparison between the density dependence of +r�
U for the attractive Lennard-Jones

pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02 from PY calcula-
tions. All quantities are reduced in terms of the solvent's Lennard-Jones parameters.

Fig. 5. Comparison between the density dependence of "� �
U (SR) for the attractive Lennard-

Jones pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02 from PY
calculations. All quantities are reduced in terms of the solvent's Lennard-Jones parameters.
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File: 822J 256515 . By:XX . Date:13:06:00 . Time:10:31 LOP8M. V8.B. Page 01:01
Codes: 1541 Signs: 895 . Length: 44 pic 2 pts, 186 mm

Fig. 6. Comparison between the density dependence of ("� �
U (SR)&"� oV) for the attractive

Lennard-Jones pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02 from
PY calculations. All quantities are reduced in terms of the solvent's Lennard-Jones parameters.

All systems are modeled as Lennard-Jones spheres with potential
parameters given in Tables 1 and 2 of Chialvo and Cummings.(7) Results
in Figs. 1 and 2 confirm unambiguously that pyrene and DTBN in super-
critical CO2 and ethane, respectively, involve attractive solute-solvent inter-
actions, i.e., (�P��xU)�

T, \<0 and C �
UV>1, being the pyrene-CO2 system

Fig. 7. Comparison between the density dependence of ,� �
U for the attractive Lennard-Jones

pyrene(U)-CO2(V) and DTBN(U)-ethane(V) systems at Tr=T�Tc=1.02 from PY calcula-
tions. All quantities are reduced in terms of the solvent's Lennard-Jones parameters.
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slightly more attractive than the DTBN-ethane as we would expect accord-
ing to the relative sizes of the corresponding Lennard-Jones parameters.
This is also clearly reflected in the sign (negative) of the corresponding
solute's partial molar volumes (Fig. 3), and solute's residual chemical
potentials (Fig. 4).

In Fig. 5 we compare the density dependence for the short-ranged con-
tribution to the solute's partial molar volume "� �

U (SR). For both mixtures
the density dependence of "� �

U (SR) shows a minimum at \_3
V<\c_3

V=0.28,
"� �

U (SR) being more negative for the pyrene-CO2 system. However, the den-
sity dependence of the solute-induced local effect on the solvent's local den-
sity ("� �

U (SR)&"o
V)T, \ (Fig. 6) shows only a change of curvature around

\_3
V<\c_3

V=0.18. Note also that even though + r�
U presents a moderate

density dependence (it changes by a factor of 2-3 for 0.05�\_3
V�0.5), ,� �

U

(Fig. 7) shows extreme sensitivity to density, exhibiting a 3-6 orders of
magnitude change in the same density range.

3.2. Gas Solubility

In this section we analyze the density dependence of ar�
: =(�ar��:)�

T, \ ,
by considering the thermodynamic behavior of an infinitely dilute solution
of Ne along the coexistence curve of the solvent, Xe, and extract some
important information about the orthobaric density dependence of
(�P��xU)�

T, \ in the vicinity of and away from the solvent's critical point.
The system is modeled as a two-component hard-core Yukawa fluid
(HCYF), for which the intermolecular potential ,ij (r) is,

,ij (r)={�
| ij (r)

if r<_ ij

if r>_ ij
(31)

where _ij is the hard-sphere diameter for the ij-interaction, and

|ij (r)=&
=ij _ij

r
exp(&: ij (r&_ij)) (32)

Following Henderson et al.(39) we choose : ij_ij=1.8 for all ij-pairs.
The rationale behind this choice is twofold: despite its simplicity this

model shows a vapor-liquid phase transition and, within the mean spheri-
cal approximation (MSA) closure, this model offers an analytical solution
to the Ornstein-Zernike equation.(40) The MSA is known to be quite
reliable in predicting thermodynamic properties of Yukawa fluids.(39, 41) In
particular, the phase envelope for the LJ fluid can be described by the
MSA for the corresponding HCYF.(42) The integral equation calculations
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must be carried out using a theory which is able to provide a consistent
description of both the structure and the thermodynamics in the vicinity of
the solvent's critical point. By consistency we mean that the critical point
of the liquid-vapor coexisting curve, obtained from the condition of equal
chemical potentials and pressure in both phases, should coincide with the
critical point of the spinodal line defined by the condition ;(�P��\)T=
1&\ĉ(0)=0.

To achieve this consistency we have chosen to use the generalized
MSA (GMSA) which for the present two-component system reads,

{cij (r)=&;| ij (r)+r&1 :
N

n=1

A (n)
ij exp(&z (n)

ij r) if r>_ij
(33)

hij (r)=&1 if r<_ij

where the Yukawa terms are introduced to correct the regular MSA for
thermodynamic self-consistency. If the contact values of the radial distribu-
tion functions gij (r)) and the isothermal compressibility are known, then
the method of Ho% ye and Stell(43) can be used to determine the Yukawa
coefficients in Eq. (33) which will enforce thermodynamic consistency. In
the present study we consider an infinitely dilute solution, which means
that the correction is only done for the solvent-solvent correlation, and, for
simplicity, we truncate the summation of Yukawa terms at N=2, with
_11 z (1)

11 =9 and _11z (2)
11 =16. The parameters A (n)

11 (n=1, 2) follow from the
solution of the constraints imposed on the contact values of the pair
correlation functions and the isothermal compressibility, i.e., the condition
of thermodynamic consistency. One way to do this is by means of an equa-
tion of state derived via the MSA energy route(43) which yields quite
accurate thermodynamics. However, again for the sake of simplicity, here
we have used the thermodynamic results from a perturbation theory
presented elsewhere.(39) In order to satisfy the ideal solution condition, i.e.,
for which solute-solute, solute-solvent and solvent-solvent potential
parameters and consequently the equality of species chemical potentials, in
a previous work(44) we assumed the convenient though arbitrary condition
for the Yukawa parameters,

_ij z (n)
ij =_11z (n)

11

(34)

A (n)
ij =

=ij _ij

=11_11

A (n)
11

However, for large solute-solvent molecular asymmetry as is usually found
in gas solvation, the GMSA closure for solute-solvent correlations does not
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guarantee accurate results. Therefore, in the present case we assume the
regular MSA closure for the solute-solvent correlations, since it is known
to yield reasonably accurate thermodynamics.(39, 41, 45) Our choice is sup-
ported by the fact that here we are studying systems with large solute-
solvent asymmetries.

In order to calculate the chemical potential along the liquid branch of
the phase envelope we need to perform an integration, Eq. (19), across the
two-phase region. Since our GMSA does not give real solutions in this
region, we perform the integration by means of the method proposed by
Ebner et al.(45) In these studies a similar integration is performed by inter-
polating the values of the direct correlation functions corresponding to the
orthobaric conditions. Since the solution of the GMSA is available in the
entire range of temperature and density, except for a rather small region
between the spinodal lines, this interpolation is sufficiently accurate for our
purposes.

The solution of the GMSA with the Yukawa coefficients as defined in
Eq. (34) is obtained by the Baxter factorization method.(46) The general
scheme of the solution is similar to that presented elsewhere.(47, 48) In the
present case the analytical solution results in a set of non-linear algebraical
equations for the Yukawa parameters A (n)

11 together with the parameters
related to the Baxter factorization functions. We solve this set of equations
by an iterative approach as described by Kalyuzhnyi and Holovko.(49) In
summary, this formalism gives a self-consistent description of both thermo-
dynamics and microstructure for the model in the entire region of state
conditions of interest.

In Fig. 8 we show the vapor-liquid coexistence curve for the pure
solvent, described as a hard-core Yukawa fluid. Note that the binodal and
spinodal curves meet at the critical conditions, i.e., kTc�=VV=1.256 and
\c _3

VV=0.313 where _11=_VV and =11==VV are the solvent's size and
energy parameters. In what follows we study an infinitely dilute solute
U#Xe in a solvent V#Ne characterized by a ratio of size parameters
(_UU �_VV)=0.697 and a ratio of energy parameters (=UU�=VV)=0.142. This
asymmetry corresponds to the system Ne(V)&Xe(U) if described as
Lennard-Jones spheres.(7)

The orthobaric density dependence of (�P��xU)�
T, \ for this infinitely

dilute mixture is shown in Fig. 9. In order to understand how the two
asymmetries contribute to the nonideality, we compare the original system
(_UU �_VV)=0.697 and (=UU�=VV)=0.142 with two special cases; one in
which _UU=_VV and =UU=0.142=VV , and the other in which _UU=
0.697_VV and =UU==VV . According to the results of Fig. 9 the change on
the solute's size and energy parameters, _UU and =UU , shows opposite
effects on the orthobaric density dependence of (�P��xU)�

T, \ . Compensation
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Fig. 8. Phase envelope of a hard-core Yukawa fluid with :11_11=1.8 as predicted by the
integral equation calculations. All quantities are reduced in terms of the solvent parameters
=VV and _VV .

between nonidealities originated from energy and size asymmetries has
been already observed for other model systems(50, 51) and, in this case, it
may explain the observed quasi-linearity on the orthobaric density
dependence of (�P��xU)�

T, \ . For the system of interest, (_UU�_VV)=0.697
and (=UU �=VV)=0.142, Krichevskii's parameter (�P��xU)�

Tc , \c
=0.6246=VV �

_3
VV .

Fig. 9. Comparison between the orthobaric density dependence of (�P��xU)�
T, \ for three

repulsive infinitely dilute hard-core Yukawa fluid mixtures with :11 _11=1.8. The coefficients
indicate the relative sizes of _UU and =UU with respect to the solvent's parameters. All
quantities are reduced in terms of the solvent parameters =VV and _VV .
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Fig. 10. Orthobaric density dependence of the infinite dilute solute partial molar volume "� �
U

for the infinitely dilute hard-core Yukawa system with :11_11=1.8, (_UU �=VV)=0.697, and
(=UU �=VV)=0.142. Comparison between the total (SR+LR) and the short-range (SR) con-
tributions. Arrow indicates the location of the solvent's critical density. All quantities are
reduced in terms of trhe solvent parameters =VV and _VV .

In Fig. 10 we show the comparison between the behavior of the
infinitely dilute solute partial molar volume, "� �

U , and its corresponding
short-range (SR) contribution, "� �

U (SR), along the coexistence curve of pure
solvent as predicted by the integral equation calculations. These properties
are positive, the solute-solvent asymmetry gives rise to a volatile solute
characterized macroscopically by (�P��xU)�

T, \>0 (Fig. 9), and microscopi-
cally by a relative depletion of the local density of solvent around the
solute with respect to that around any solvent molecule. Note that while
"� �

U shows the typical compressibility-driven divergence at the solvent's
critical point, "� �

U (SR) behaves smoothly along the coexistence curve.
In Fig. 11 we display the predicted orthobaric density dependence of

ar�
: , Eq. (19). Note that this property shows an almost linear behavior

along the entire density domain, a prelude of similar behavior for the
related solvation quantities. For example, in Figs. 12 and 13 we present the
corresponding behavior for Henry's constant and solute distribution factor
along the liquid branch of the coexistence curve. The slopes of the T ln K�

vs. \l and T ln(HU, V �f o
V) vs. \l representations are 12.092=VV_3

VV�k and
6.352=VV _3

VV �k, respectively, with a correlation coefficient greater than
0.9998. If we assume the asymptotic expressions (12) and (13), then these
slopes predict 0.592=VV �_3

VV and 0.622=VV�_3
VV for Krichevskii's parameters,

respectively, in comparison to the actual value of 0.625=VV�_3
VV , i.e., within

a 50 range.
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Fig. 11. Orthobaric density dependence of ar�
: =(�ar��:U)�

T, \ for the infinitely dilute hard-
core Yukawa system with :11 _11=1.8, (_UU �_VV)=0.697, and (=UU�=VV)=0.142. Arrow
indicates the location of the solvent's critical density. All quantities are reduced in terms of the
solvent parameters =VV and _VV .

Regarding the behavior of Ostwald's coefficient L�, Fig. 14, the fact
that the two contributions to T ln L�, T ln K� and T ln(\l�\&)_ , show
opposite density dependence gives support to Wilhelm's suggestion that
T ln L� vs. (\l&\c), may show a better linear relationship than T ln K�

vs. (\l&\c) in a wider range of orthobaric densities.(24) For our model
system, both T ln K� and T ln(\l�\&)_ present linear dependence with \l

Fig. 12. Orthobaric density dependence of T ln(HU, V �f o
V) for the infinitely dilute hard-core

Yukawa system with :11_11=1.8, (_UU �_VV)=0.697, and (=UU�=VV)=0.142. Arrow indicates
the location of the solvent's critical density. All quantities are reduced in terms of the solvent
parameters =VV and _VV .
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Fig. 13. Orthobaric density dependence of T ln K � for the infinitely dilute hard-core
Yukawa system with :11_11=1.8, (_UU �_VV)=0.697, and (=UU�=VV)=0.142. Arrow indicates
the location of the solvent's critical density. All quantities are reduced in terms of the solvent
parameters =VV and _VV .

with correlation factors larger than 0.9997. Therefore, it is not likely under
this circumstance to observe any improvement in the linear regression of
T ln L� vs. \l over the other solvation quantities.

If we assume Eq. (15) to be also valid beyond the asymptotic region,
based on the observed linear behavior of T ln K� and T ln(\l�\&)_ vs. \l

Fig. 14. Orthobaric density dependence of T ln F, F=K�, \l�\& , L�, for the infinitely dilute
hard-core Yukawa system with :11 _11=1.8, (_UU �_VV)=0.697, and (=UU�=VV)=0.142. Arrow
indicates the location of the solvent's critical density. All quantities are reduced in terms of the
solvent parameters =VV and _VV .
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for our model system, then the regressed Krichevskii's parameter is
(�P��xU)�

Tc , \c
=0.610=VV�_3

VV , i.e., between those obtained by regression of
T ln K� and T ln(HU, V�f o

V).

3.3. Solvation Effects on Kinetic Rate Constants

In this section we illustrate the solvation behavior of Lennard-Jones
mixtures composed of a solvent and three infinitely dilute species, one of
them being a cosolvent. While the Lennard-Jones model provides a
pedestrian representation of the actual reacting systems studied by Roberts
et al.(52) they allow us to illustrate the effect of species-solvent molecular
asymmetry on the pressure dependence of the kinetic rate constants. The
system under consideration consists of triplet benzophenone (3BP) as an
infinitely dilute reactant, either O2 or 1,4-cyclohexadiene as an infinitely
dilute reactive cosolvent, the infinitely dilute transition state species (TS),
all immersed in supercritical solvent CO2 .

Fig. 15. Density dependence of species partial molar volume "� �
U and its solvation counter-

part "� �
U (SR) at Tr=1.01 for the reactive systems 3BP+ 3O2+CO2 � TS (upper), and 3BP+

1,4&C6+CO2 � TS (lower). All quantities are reduced in terms of the solvent parameters =VV

and _VV .
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Because of the central role played by the partial molar volume of
species in solution, we first determine their density dependence for the three
species at infinite dilution along the near-critical isotherm Tr=1.01 as
shown in Figs. 15a, b in comparison with the corresponding "� �

U (SR).
[Note that because 100 volume units r2.0 liter�mol in these illustrations,
the species partial molar volumes at near-critical conditions vary from
3.0 liter�mol (oxygen) to &30 liter�mol (transition state complex). In con-
trast, the corresponding solvation contributions go from 0.15 liter�mol to
1.45 liter�mol]. For illustration purposes, we have also included in these
graphs the properties of two limiting cases, a solute in the ideal solution
(IS), i.e., the pure solvent, and the ideal gas solute (IG). These cases are
very convenient references because they encompass two extreme molecular
asymmetries, i.e., the presence of intermolecular forces with no solute-
solvent asymmetry, and the absence of solute-solvent interactions, respec-
tively.

As the solute becomes less repulsive, with respect to that of an ideal
gas (see Appendix A of Chialvo et al.30), (�P��xU)�

T, \, xk{u
reaches zero for

Fig. 16. Density dependence of species (�P��xU)�
T, \, xk{u

at Tr=1.01 for the reactive system
3BP+ 3O2+CO2 � TS (upper) and 3BP+1,4&C6+CO2 � TS (lower). All quantities are
reduced in terms of the solvent parameters =VV and _VV .
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the ideal solution (IS), and then becomes negative for the more pro-
nounced molecular asymmetries (see Figs. 16a, b). Note that this function
can show an extreme finite value at a density greater or smaller than the
critical, depending on the molecular asymmetry, with the exception of the
IS for which (�P��xU)�

T, \, xk{u
=0 at any state condition. Correspondingly,

the partial molar volumes "� �U becomes less positive as we turn on the
molecular interactions (IG � IS), and reaches large negative values as we
increase the molecular asymmetry with respect to the solvent. In all cases,
except for the IS, "� �

U exhibits an extreme value around the density where
the isothermal compressibility does. In contrast, "� �U (SR) shows positive
values with a monotonic density change for the IG and IS cases. Then, for
more pronounced asymmetries, "� �

U (SR) exhibits a positive extreme depend-
ing on the behavior of (�P��xU)�

T, \, xk{u
.

The positive partial molar volume at infinite dilution exhibited by the
oxygen, the signature of a volatile, (�P��xU)�

T, \, xk{u
>0,(8) or repulsive(38)

solute is the expected behavior for a dissolved gas in a near-critical solvent.
In contrast, the 1,4-cyclohexadiene, the triplet benzophenone and the

Fig. 17. Comparison between (� ln kTST��P)T, x and (� ln kTST��\)T, x for the reactive
system 3BP+3O2+CO2 � TS and at Tr=1.01 and \r=1.0, with (!=(=UV�=B

UV)=1.0,
'=(_UV�_L

UV)=1.0) (upper), and (!=(=UV�=B
UV)r0.94, '=(_UV�_L

UV)r0.93) (lower).
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corresponding transition state complexes (TS) exhibit the typical non-
volatile, (�P��xU)�

T, \, xk{u
<0, or attractive behavior usually associated with

bulky (strongly interacting) solutes. This behavior can be clearly seen in
Figs. 16a, b where we display the corresponding density dependence for
(�P��xU)�

T, \, xk{u
, the macroscopic quantity that most succinctly charac-

terizes the solvation phenomenon.
The dependence of the sign of the (� ln kTST��P)T, x on the relative

asymmetries between solute species and the solvent becomes more evident
when considering the sensitivity of the solvation properties to perturbations
of the solute-solvent interactions (e.g., combining rules). Since we have
used the Lorentz and Berthelot rules throughout our calculations (=B

UV=
(=VV =UU)0.5 and _L

UV=0.5(_VV+_UU)), and our earlier investigation
indicated that small perturbations of these rules have profound effects on
the corresponding excess properties, (53) we decided to study their effect on
the resulting (� ln kTST��P)T, x . For example, a 40 decrease from the
Berthelot rule, !=(=UV �=B

UV)r0.96, and a 70 decrease from the Lorentz
rule, '=(_UV �_L

UV)r0.93, for the TS&CO2 interactions suffices to match

Fig. 18. Comparison between (� ln kTST��P)T, x and (� ln kTST��\)T, x for the reactive
system 3BP+1,4�C6+CO2 � TS and at Tr=1.01 and \r=1.0, with (!=(=UV�=B

UV)=1.0,
'=(_UV�_L

UV)=1.0) (upper), and (!=(=UV�=B
UV)r0.89, '=(_UV�_L

UV)r0.87) (lower).
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the asymmetry of the 3BP&CO2 interactions, and therefore, to change the
sign of the pressure dependence in the reaction 3BP+ 3O2+CO2 � TS
from (� ln kTST��P)T, x>0 to (� ln kTST��P)T, x<0 (Figs. 17a, b). Likewise,
deviations of !=(=UV �=B

UV)r0.89 and '=(_UV�_L
UV)r0.87 for the

TS&CO2 in the 3BP+1,4�C6+CO2 � TS, will reverse the sign of
(� ln kTST��P)T, x from positive to negative (Figs. 18a, b).

3.4. Ion Solvation

Here we present a few results for CsBr in an infinitely dilute aqueous-
type solution, along three supercritical isotherms (643 K, 673 K, and
703 K), and within the density range of 0.0136�\(g�cm3)�0.81. The
system is defined as charged hard sphere ions immersed in a model
aqueous-like solvent, described as a hard sphere with an embedded point
polarizability and permanent electrostatic multipole moments (including
quadrupole and octupoles). The effect of the solvent polarizability is taken
into account by using the self-consistent mean field approach (SCMF) as
described elsewhere.(54, 55) In contrast to the earlier calculations of Kusalik
and Patey, (54, 55) here the ions bear only a 660 of the full charge. The
reduced charges were necessary to avoid the collapse of solvent molecules
on bare ions, and thus, ensure the convergence of the integral equation
calculations over the entire solvent density range considered. (The RHNC
integral equation theory appears to predict a shifting upwards of the phase
coexistence envelope due to the perturbing effects of bare unscreened ionic
charges. These effects can be reduced by increasing the size of the ions or
by decreasing the ionic charge).

Here we target the T&\ dependence of D�
UV=(}IG�}) "� �

U from a
molecular viewpoint, where } and "� �U are the isothermal compressibility of
the solvent and the partial molar volume of the ionic solute (salt) at infinite
dilution, and the superscript IG denotes the ideal gas behavior. This quan-
tity is currently the focus of much attention because of its intriguingly weak
temperature-dependence in the range of 550<T (K)<725, (56, 57) which
makes it very attractive for regression purposes. For example, in Fig. 19 we
present the RHNC predicted solvent density-dependence of D�

UV along the
three supercritical isotherms for infinitely dilute CsBr aqueous-like solu-
tions. Note that, according to the predicted relation between } and \ along
the isotherm T=643 K, the critical point of this water-like solvent is
Tcr643 K and \cr0.20 g�cm3, i.e., the three isotherms considered here
are supercritical. We also compare these results with the corresponding
experimental data of Sedlbauer et al., (57) which were determined from
measurements of solute partial molar volumes at infinite dilution within the
temperature and density ranges 604<T (K)<717 and 0.26<\(g�cm3)<
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Fig. 19. Behavior of D�
UV=(}IG�}) "� �

U for an infinitely dilute CsBr aqueous solution as a
function of the solvent density along three supercritical isotherms in comparison with
experimental data. Arrow indicates the estimated critical density of the model solvent.

0.60, respectively. The outstanding feature of the predicted values of D�
UV

is their lack of temperature dependence for supercritical densities, an
appealing behavior that prompts some relevant questions regarding the
underlying microscopic mechanism. Incidentally, this is the same behavior
observed previously for several types of high-temperature electrolyte and
non-electrolyte aqueous solutions.(56�58)

Fig. 20. Behavior of N �
U, ex(SR) and (C �

UV&C 0
VV)�\ for an infinitely dilute CsBr aqueous

solution as a function of the solvent density along three supercritical isotherms in comparison
with experimental data. Vertical arrow indicates the estimated critical density of the model
solvent.

194 Chialvo et al.



File: 822J 256529 . By:XX . Date:13:06:00 . Time:10:33 LOP8M. V8.B. Page 01:01
Codes: 2387 Signs: 1766 . Length: 44 pic 2 pts, 186 mm

Fig. 21. Behavior of "� �
U (SR) and "� �

U (LR)#"� �
U &"� �

U (SR) for an infinitely dilute CsBr
aqueous solution as a function of the solvent density along three supercritical isotherms in
comparison with experimental data. Vertical arrow indicates the estimated critical density of
the model solvent. The three lines joining the experimental data correspond approximately to
the isotherms of 669 K, 686 K, and 709 K from bottom to top, respectively.

For example, the weak temperature-dependence exhibited by
D�

UV
(12, 13) can be interpreted in terms of N �

U, ex(SR) (see Fig. 20), a quan-
tity that also displays a clearly negligible temperature-dependence for
supercritical densities. Yet another way to interpret the previously men-
tioned weak temperature dependence is through the analysis of the two
contributions to the solute partial molar volume "� �

U , i.e., the solvation
"� �

U (SR), and the compressibility-driven "� �
U (LR) contributions, respec-

tively. From Fig. 21 it is clear that the solvation portion "� �U (SR) (as
opposed to the compressibility-driven portion "� �

U (LR)) exhibits the negli-
gible temperature dependence found in the associated quantities (Figs. 19
and 20), and highlights once again the appeal of well-defined solvation
quantities as the target for regression purposes.

4. DISCUSSION AND FINAL REMARKS

We have briefly described the solvation process in high-temperature
solutions based on thermodynamic and statistical mechanical views, and
according to the discrimination between the true solvation phenomena and
the largely unrelated accompanying compressibility-driven phenomena.
The solvation-related properties (here designated as ``SR'') bear unam-
biguous microscopic meaning, and can be interpreted macroscopically in
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terms of the isothermal compressibility of the pure solvent } and the
infinite-dilution partial molar properties.(13) For example,

"� �
U (SR)=(}IG�})("� �

U &&"o
V)+&"o

V (35)

and, consequently,

N �
U, ex(SR)=(}IG�})(&&("� �

U �"o
V)) (36)

This excess number N �
U, ex(SR) (and its individual ion counterparts)

should not be confused with the traditional idea of coordination number
(the geometric arrangement of solvent molecules around a central species),
and consequently, it cannot be associated with the conventional solvation
numbers obtained through NMR, EXAFS, neutron or x-ray diffraction
measurements.(59, 60) In fact, N �

U, ex(SR) accounts for the solvent molecules
directly correlated with the central species in excess over that in which the
central molecule is another solvent molecule (the ideal solution in the
Lewis�Randall sense). Note also that, while N �

U, ex(SR) encompasses
unambiguous connections with all solvation properties, the more familiar
concept of solvation numbers does not.(13)

Because this solvation approach hinges upon the rigorous Kirkwood�
Buff 's fluctuation formalism of mixtures, and it is applied to precisely-
defined model mixtures, we are able to make unambiguous connections
between the species molecular asymmetries, the solution microstructure,
and the solvation-relevant macroscopic properties. Even though the solva-
tion formalism was derived for molecules of arbitrary symmetry, we applied
it first to simple model mixtures for which integral equation calculations
provide accurate predictions. These calculations allow us not only to
generate the microstructural details of the systems, but also to calculate the
required macroscopic properties relevant to high-temperature solvation
phenomena. In doing so, we maintain an internal consistency between the
microstructure and the corresponding (macroscopic) thermophysical
properties.

Subsequently, and considering that the target of the molecular-based
studies is the development of successful engineering correlations, the solva-
tion formalism becomes a powerful tool for interpreting of experimental
data and for choosing the best combination of properties for regression
purposes.
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